Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
PLoS One ; 19(2): e0295928, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394153

RESUMO

The fall armyworm (Spodoptera frugiperda) is one of the most destructive pests of corn. New infestations have been reported in the East Hemisphere, reaching India, China, Malaysia, and Australia, causing severe destruction to corn and other crops. In Puerto Rico, practical resistance to different mode of action compounds has been reported in cornfields. In this study, we characterized the inheritance of resistance to chlorantraniliprole and flubendiamide and identified the possible cross-resistance to cyantraniliprole and cyclaniliprole. The Puerto Rican (PR) strain showed high levels of resistance to flubendiamide (RR50 = 2,762-fold) and chlorantraniliprole (RR50 = 96-fold). The inheritance of resistance showed an autosomal inheritance for chlorantraniliprole and an X-linked inheritance for flubendiamide. The trend of the dominance of resistance demonstrated an incompletely recessive trait for H1 (♂ SUS × â™€ PR) × and an incompletely dominant trait for H2 (♀ SUS × â™‚ PR) × for flubendiamide and chlorantraniliprole. The PR strain showed no significant presence of detoxification enzymes (using synergists: PBO, DEF, DEM, and VER) to chlorantraniliprole; however, for flubendiamide the SR = 2.7 (DEM), SR = 3.2 (DEF) and SR = 7.6 (VER) indicated the role of esterases, glutathione S- transferases and ABC transporters in the metabolism of flubendiamide. The PR strain showed high and low cross-resistance to cyantraniliprole (74-fold) and cyclaniliprole (11-fold), respectively. Incomplete recessiveness might lead to the survival of heterozygous individuals when the decay of diamide residue occurs in plant tissues. These results highlight the importance of adopting diverse pest management strategies, including insecticide rotating to manage FAW populations in Puerto Rico and other continents.


Assuntos
Fluorocarbonos , Inseticidas , Mariposas , Ftalimidas , Pirazóis , Sulfonas , ortoaminobenzoatos , Humanos , Animais , Spodoptera/genética , Diamida/farmacologia , Porto Rico , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Larva
2.
Sci Rep ; 14(1): 4308, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383681

RESUMO

The fall armyworm (FAW) Spodoptera frugiperda is a severe economic pest of multiple crops globally. Control of this pest is often achieved using insecticides; however, over time, S. frugiperda has developed resistance to new mode of action compounds, including diamides. Previous studies have indicated diamide resistance is a complex developmental process involving multiple detoxification genes. Still, the mechanism underlying the possible involvement of microRNAs in post-transcriptional regulation of resistance has not yet been elucidated. In this study, a global screen of microRNAs (miRNAs) revealed 109 known and 63 novel miRNAs. Nine miRNAs (four known and five novel) were differentially expressed between insecticide-resistant and -susceptible strains. Gene Ontology analysis predicted putative target transcripts of the differentially expressed miRNAs encoding significant genes belonging to detoxification pathways. Additionally, miRNAs are involved in response to diamide exposure, indicating they are probably associated with the detoxification pathway. Thus, this study provides comprehensive evidence for the link between repressed miRNA expression and induced target transcripts that possibly mediate diamide resistance through post-transcriptional regulation. These findings highlight important clues for further research to unravel the roles and mechanisms of miRNAs in conferring diamide resistance.


Assuntos
Inseticidas , MicroRNAs , Animais , Spodoptera/genética , MicroRNAs/genética , Diamida/farmacologia , Inseticidas/farmacologia , Regulação da Expressão Gênica , Resistência a Inseticidas/genética , Larva
4.
Pestic Biochem Physiol ; 171: 104727, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33357549

RESUMO

Insecticide resistance is an ongoing challenge in agriculture and disease vector control. Here, we demonstrate a novel strategy to attenuate resistance. We used genomics tools to target fundamental energy-associated pathways and identified a potential "Achilles' heel" for resistance, a resistance-associated protein that, upon inhibition, results in a substantial loss in the resistance phenotype. Specifically, we compared the gene expression profiles and structural variations of the insulin/insulin-like growth factor signaling (IIS) pathway genes in DDT-susceptible (91-C) and -resistant (91-R) Drosophila melanogaster (Drosophila) strains. A total of eight and seven IIS transcripts were up- and down-regulated, respectively, in 91-R compared to 91-C. A total of 114 nonsynonymous mutations were observed between 91-C and 91-R, of which 51.8% were fixed. Among the differentially expressed transcripts, phosphoenolpyruvate carboxykinase (PEPCK), down-regulated in 91-R, encoded the greatest number of amino acid changes, prompting us to perform PEPCK inhibitor-pesticide exposure bioassays. The inhibitor of PEPCK, hydrazine sulfate, resulted in a 161- to 218-fold decrease in the DDT resistance phenotype (91-R) and more than a 4- to 5-fold increase in susceptibility in 91-C. A second target protein, Glycogen synthase kinase 3ß (GSK3ß-PO), had one amino acid difference between 91-C and 91-R, and the corresponding transcript was also down-regulated in 91-R. A GSK3ß-PO inhibitor, lithium chloride, likewise reduced the resistance but to a lesser extent than did hydrazine sulfate for PEPCK. We demonstrate the potential role of IIS genes in DDT resistance and the potential discovery of an "Achilles' heel" against pesticide resistance in this pathway.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , DDT/farmacologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Calcanhar , Resistência a Inseticidas/genética , Insulina , Transdução de Sinais
5.
Sci Rep ; 10(1): 14394, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873850

RESUMO

The role of miRNAs in mediating insecticide resistance remains largely unknown, even for the model species Drosophila melanogaster. Building on prior research, this study used microinjection of synthetic miR-310s mimics into DDT-resistant 91-R flies and observed both a significant transcriptional repression of computationally-predicted endogenous target P450 detoxification genes, Cyp6g1 and Cyp6g2, and also a concomitant increase in DDT susceptibility. Additionally, co-transfection of D. melanogaster S2 cells with dual luciferase reporter constructs validated predictions that miR-310s bind to target binding sites in the 3' untranslated regions (3'-UTR) of both Cyp6g1 and Cyp6g2 in vitro. Findings in the current study provide empirical evidence for a link between reduced miRNA expression and an insecticidal resistance phenotype through reduced targeted post-transcriptional suppression of transcripts encoding proteins involved in xenobiotic detoxification. These insights are important for understanding the breadth of adaptive molecular changes that have contributed to the evolution of DDT resistance in D. melanogaster.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , DDT/farmacologia , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Inseticidas/farmacologia , MicroRNAs/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Regiões 3' não Traduzidas , Animais , Sítios de Ligação , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Evolução Molecular , Regulação da Expressão Gênica/efeitos dos fármacos , Resistência a Inseticidas , MicroRNAs/metabolismo , Fenótipo
6.
PLoS One ; 15(8): e0237986, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32841282

RESUMO

Insects experience a diversity of subtoxic and/or toxic xenobiotics through exposure to pesticides and, in the case of herbivorous insects, through plant defensive compounds in their diets. Many insects are also concurrently exposed to antioxidants in their diets. The impact of dietary antioxidants on the toxicity of xenobiotics in insects is not well understood, in part due to the challenge of developing appropriate systems in which doses and exposure times (of both the antioxidants and the xenobiotics) can be controlled and outcomes can be easily measured. However, in Drosophila melanogaster, a well-established insect model system, both dietary factors and pesticide exposure can be easily controlled. Additionally, the mode of action and xenobiotic metabolism of dichlorodiphenyltrichloroethane (DDT), a highly persistent neurotoxic organochlorine insecticide that is detected widely in the environment, have been well studied in DDT-susceptible and -resistant strains. Using a glass-vial bioassay system with blue diet as the food source, seven compounds with known antioxidant effects (ascorbic acid, ß-carotene, glutathione, α-lipoic acid, melatonin, minocycline, and serotonin) were orally tested for their impact on DDT toxicity across three strains of D. melanogaster: one highly susceptible to DDT (Canton-S), one mildly susceptible (91-C), and one highly resistant (91-R). Three of the antioxidants (serotonin, ascorbic acid, and ß-carotene) significantly impacted the toxicity of DDT in one or more strains. Fly strain and gender, antioxidant type, and antioxidant dose all affected the relative toxicity of DDT. Our work demonstrates that dietary antioxidants can potentially alter the toxicity of a xenobiotic in an insect population.


Assuntos
Antioxidantes/farmacologia , DDT/toxicidade , Dieta , Drosophila melanogaster/efeitos dos fármacos , Resistência a Inseticidas/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Feminino , Genótipo , Masculino , Serotonina/farmacologia , Caracteres Sexuais
7.
Pestic Biochem Physiol ; 165: 104552, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32359537

RESUMO

The fruit fly, Drosophila melanogaster, is predominantly found in overripe, rotten, fermenting, or decaying fruits and is constantly exposed to chemical stressors such as acetic acid, ethanol, and 2-phenylethanol. D. melanogaster has been employed as a model system for studying the molecular bases of various types of chemical-induced tolerance. Expression profiling using Illumina sequencing has been performed for identifying changes in gene expression that may be associated with evolutionary adaptation to exposure of acetic acid, ethanol, and 2-phenylethanol. We identified a total of 457 differentially expressed genes that may affect sensitivity or tolerance to three chemicals in the chemical treatment group as opposed to the control group. Gene-set enrichment analysis revealed that the genes involved in metabolism, multicellular organism reproduction, olfaction, regulation of signal transduction, and stress tolerance were over-represented in response to chemical exposure. Furthermore, we also detected a coordinated upregulation of genes in the Toll- and Imd-signaling pathways after the chemical exposure. Quantitative reverse transcription PCR analysis revealed that the expression levels of nine genes within the set of genes identified by RNA sequencing were up- or downregulated owing to chemical exposure. Taken together, our data suggest that such differentially expressed genes are coordinately affected by chemical exposure. Transcriptional analyses after exposure of D. melanogaster with three chemicals provide unique insights into subsequent functional studies on the mechanisms underlying the evolutionary adaptation of insect species to environmental chemical stressors.


Assuntos
Ácido Acético , Drosophila melanogaster , Animais , Drosophila , Etanol , Perfilação da Expressão Gênica , Álcool Feniletílico
8.
J Econ Entomol ; 113(2): 974-979, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31967641

RESUMO

Cowpea [Vigna unguiculata (L) Walp.] is an important staple legume in the diet of many households in sub-Saharan Africa. Its production, however, is negatively impacted by many insect pests including bean pod borer, Maruca vitrata F., which can cause 20-80% yield loss. Several genetically engineered cowpea events that contain a cry1Ab gene from Bacillus thuringiensis (Bt) for resistance against M. vitrata were evaluated in Nigeria, Burkina Faso, and Ghana (West Africa), where cowpea is commonly grown. As part of the regulatory safety package, these efficacy data were developed and evaluated by in-country scientists. The Bt-cowpea lines were planted in confined field trials under Insect-proof netting and artificially infested with up to 500 M. vitrata larvae per plant during bud formation and flowering periods. Bt-cowpea lines provided nearly complete pod and seed protection and in most cases resulted in significantly increased seed yield over non-Bt control lines. An integrated pest management strategy that includes use of Bt-cowpea augmented with minimal insecticide treatment for protection against other insects is recommended to control pod borer to enhance cowpea production. The insect resistance management plan is based on the high-dose refuge strategy where non-Bt-cowpea and natural refuges are expected to provide M. vitrata susceptible to Cry1Ab protein. In addition, there will be a limited release of this product until a two-toxin cowpea pyramid is released. Other than South African genetically engineered crops, Bt-cowpea is the first genetically engineered food crop developed by the public sector and approved for release in sub-Saharan Africa.


Assuntos
Fabaceae , Lepidópteros , Mariposas/genética , Vigna , Animais , Proteínas de Bactérias , Burkina Faso , Endotoxinas , Larva , Nigéria , Controle Biológico de Vetores , Plantas Geneticamente Modificadas
9.
Pestic Biochem Physiol ; 161: 86-94, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31685201

RESUMO

While insecticide resistance presents a challenge for those intent on controlling insect populations, these challenges have also generated a set of tools that can be used to ask fundamental biological questions about that resistance. Numerous species of insects have evolved resistance to multiple classes of insecticides. Each one of these species and their respective resistant populations represent a potential tool for understanding the molecular basis of the evolution of resistance. However, in-laboratory maintenance of resistant insect populations (and their comparative susceptible populations) suitable for asking the needed set of questions around the molecular consequences of long-term pesticide exposure requires a significant, in places prohibitive, level of resources. Drosophila melanogaster (hereafter referred to as Drosophila) is a model insect system with populations easily selected with pesticides and readily maintainable over decades. Even within Drosophila, however, few populations exist where long-term pesticide selection has occurred along with contrasting non-selected population. As such, the Drosophila 91-C and 91-R populations, which exhibit insecticide resistance to DDT (91-R), compared to a non-selection population (91-C), represent a unique resource for the study of high level DDT resistance. Moreover, with the availability of "omics" technologies over the past several decades, this paired population has emerged as a useful tool for understanding both the molecular basis of pesticide resistance and the molecular consequences of long-term pesticide exposure. In this review, we summarize the studies with these aforementioned populations over the past several decades, addressing what has been learned from these efforts.


Assuntos
DDT/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Resistência a Inseticidas/genética , Animais , Drosophila melanogaster/genética , Genoma de Inseto , Inativação Metabólica/genética
10.
Pestic Biochem Physiol ; 159: 136-143, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31400775

RESUMO

Cytochrome P450s are part of a super-gene family that has undergone gene duplication, divergence, over-expression and, in some cases, loss of function. One such case is the 91-R and 91-C strains of common origin, in Drosophila melanogaster, whereby 91-R (DDT resistant strain) overexpresses Cyp4p1 and Cyp4p2 and both genes are lost in 91-C (DDT susceptible strain). In this study, we used a comparative approach to demonstrate that transcription of Cyp4p1 and Cyp4p2 were constitutively up-regulated in the Drosophila melanogaster strain 91-R as compared to another DDT susceptible strain Canton-S which does not have a loss of function of these genes. Furthermore, significantly increased expression of Cyp4p1 and Cyp4p2 was induced in 91-R in response to sublethal DDT exposure, however, such induction did not occur in the DDT treated Canton-S. Additionally, fixed nucleotide variation within putative transcription factor binding sites of Cyp4p1 and Cyp4p2 promoters were observed between 91-R and Canton-S, however, their impact on transcription remains to be determined. Two GAL4/UAS transgenic strains with integrated heat shock-inducible Cyp4p1- or Cyp4p2-RNAi constructs within wild-type genetic backgrounds were developed. Following heat shock induction of Cyp4p1 and Cyp4p2 knockdown, these transgenic lines showed increased DDT mortality as compared to their corresponding non-heat shock controls. These results provide a functional link of Cyp4p1 and Cyp4p2 in conferring tolerance to DDT exposure.


Assuntos
DDT/farmacologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Inseticidas/farmacologia , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Drosophila/genética , Resistência a Inseticidas/genética
11.
Int J Insect Sci ; 11: 1179543318825250, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30728729

RESUMO

The egg parasitoid Gryon fulviventre is a potential biological control agent of Clavigralla tomentosicollis, a coreid pod-sucking pest of Vigna unguiculata. The host location behavior of naive parasitoid females was studied using a four-armed olfactometer. Two strains of G. fulviventre parasitoids from Burkina Faso and Benin were exposed to odors provided by healthy and infested pods as well as C. tomentosicollis females and males. The time spent in each odor zone was recorded to determine the preference of parasitoid females. Results show that odors from healthy pods, infested pods, and pest females did not attract the parasitoid. However, a significantly attractive response of both strains of G. fulviventre was recorded in the presence of volatiles from males of C. tomentosicollis. Moreover, experiments testing G. fulviventre females' behavior when simultaneously exposed to volatiles from cowpea pods (healthy and infested) and increasing numbers of C. tomentosicollis males revealed a significantly higher attraction of parasitoid females of both strains by volatiles from ten males of C. tomentosicollis. The results suggest that the males of the insect pest emit a pheromone used as kairomone by parasitoids to locate their host. The conditions determining this attractiveness at field level and its impact on host-searching efficiency are discussed.

12.
Front Genet ; 10: 45, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804985

RESUMO

Ten constitutively differentially expressed miRNAs were previously described between DDT-resistant 91-R and -susceptible control Drosophila melanogaster strains, and among their predicted target genes were those associated with metabolic DDT resistance mechanisms. The present study evaluated the inducibility of miRNA expression and putative downstream regulation of cytochrome P450s in response to DDT exposure in a time-dependent manner in 91-R and the susceptible Canton-S strain. Specifically, RT-qPCR analysis showed that DDT exposures led to the significant down-regulation (repression) of miR-310-3p, miR-311-3p, miR-312-3p, miR-313-3p, and miR-92a-3p levels in Canton-S. This is contrasted with the lack of significant changes in 91-R at most time-points following DDT exposure. The levels of expression among miRNAs exhibited opposite expression patterns compared to their corresponding putative target cytochrome P450s at the same time points after DDT exposure. Collectively, results from this study suggest that miR-310-3p, miR-311-3p, miR-312-3p, miR-313-3p, and miR-92a-3p might have a potential role in the control of DDT detoxification through the post-transcriptional regulation of target cytochrome P450s in Canton-S. Conversely, the lack of significant changes of these same miRNAs in 91-R following DDT-exposure suggests a possible adaptive mutation that removes repressive control mechanisms. These data are important for the understanding impact of adaptive changes in miRNA expression on post-transcriptional regulatory mechanism involved in the evolution of DDT resistance in 91-R.

13.
J Insect Sci ; 18(6)2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30383265

RESUMO

The organochloride insecticide dichlorodiphenyltrichloroethane (DDT) and its metabolites can increase cellular levels of reactive oxygen species (ROS), cause mitochondrial dysfunction, and induce apoptosis. The highly DDT-resistant Drosophila melanogaster Meigen 1830 (Drosophila) strain, 91-R, and its susceptible control, 91-C, were used to investigate functional and structural changes among mitochondrial-derived pathways. Resequencing of mitochondrial genomes (mitogenomes) detected no structural differences between 91-R and 91-C, whereas RNA-seq suggested the differential expression of 221 mitochondrial-associated genes. Reverse transcriptase-quantitative PCR validation of 33 candidates confirmed that transcripts for six genes (Cyp12d1-p, Cyp12a4, cyt-c-d, COX5BL, COX7AL, CG17140) were significantly upregulated and two genes (Dif, Rel) were significantly downregulated in 91-R. Among the upregulated genes, four genes are duplicated within the reference genome (cyt-c-d, CG17140, COX5BL, and COX7AL). The predicted functions of the differentially expressed genes, or known functions of closely related genes, suggest that 91-R utilizes existing ROS regulation pathways of the mitochondria to combat increased ROS levels from exposure to DDT. This study represents, to our knowledge, the initial investigation of mitochondrial genome sequence variants and functional adaptations in responses to intense DDT selection and provides insights into potential adaptations of ROS management associated with DDT selection in Drosophila.


Assuntos
DDT , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Genes de Insetos/genética , Genes Mitocondriais/genética , Resistência a Inseticidas/genética , Animais
14.
PLoS One ; 13(4): e0196518, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29698530

RESUMO

Dichloro-diphenyl-trichloroethane (DDT) resistance among arthropod species is a model for understanding the molecular adaptations in response to insecticide exposures. Previous studies reported that DDT resistance may involve one or multiple detoxification genes, such as cytochrome P450 monooxygenases (P450s), glutathione S-transferases (GSTs), esterases, and ATP binding cassette (ABC) transporters, or changes in the voltage-sensitive sodium channel. However, the possible involvement of microRNAs (miRNAs) in the post-transcriptional regulation of genes associated with DDT resistance in the Drosophila melanogaster strain 91-R remains poorly understood. In this study, the majority of the resulting miRNAs discovered in small RNA libraries from 91-R and the susceptible control strain, 91-C, ranged from 16-25 nt, and contained 163 precursors and 256 mature forms of previously-known miRNAs along with 17 putative novel miRNAs. Quantitative analyses predicted the differential expression of ten miRNAs between 91-R and 91-C, and, based on Gene Ontology and pathway analysis, these ten miRNAs putatively target transcripts encoding proteins involved in detoxification mechanisms. RT-qPCR validated an inverse correlation between levels of differentially-expressed miRNAs and their putatively targeted transcripts, which implies a role of these miRNAs in the differential regulation of detoxification pathways in 91-R compared to 91-C. This study provides evidence associating the differential expression of miRNAs in response to multigenerational DDT selection in Drosophila melanogaster and provides important clues for understanding the possible roles of miRNAs in mediating insecticide resistance traits.


Assuntos
Drosophila melanogaster/genética , Resistência a Inseticidas/genética , MicroRNAs/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , DDT/toxicidade , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Inseticidas/química , MicroRNAs/química , MicroRNAs/genética , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Análise de Sequência de RNA
15.
J Econ Entomol ; 111(3): 1469-1475, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29659900

RESUMO

Cowpea provides a significant source of protein for over 200 million people in Sub-Saharan Africa. The cowpea bruchid, Callosobruchus maculatus (F) (Coleoptera: Bruchidae), is a major pest of cowpea as the larval stage attacks stored cowpea grains, causing postharvest loss. Cowpea bruchid larvae spend all their time feeding within the cowpea seed. Past research findings, published over 25 yr ago, have shown that feeding activity of several bruchids within a cowpea seed emit mechanical vibrations within the frequency range 5-75 kHz. This work led to the development of monitoring technologies that are both important for basic research and practical application. Here, we use newer and significantly improved technologies to re-explore the nature of the vibration signals produced by an individual C. maculatus, when it feeds in cowpea seeds. Utilizing broadband frequency sensing, individual fourth-instar bruchid larvae feeding activities (vibration events) were recorded to identify specific key emission frequencies. Verification of recorded events and association to actual feeding activities was achieved through mass measurements over 24 h for a series of replicates. The measurements identified variable peak event emission frequencies across the replicate sample set ranging in frequency from 16.4 to 26.5 kHz. A positive correlation between the number of events recorded and the measured mass loss of the cowpea seed was observed. The procedure and verification reported in this work provide an improved basis for laboratory-based monitoring of single larval feeding. From the rich dataset captured, additional analysis can be carried out to identify new key variables of hidden bruchid larval activity.


Assuntos
Acelerometria/métodos , Besouros/fisiologia , Cadeia Alimentar , Controle de Insetos/métodos , Vigna , Animais , Besouros/crescimento & desenvolvimento , Comportamento Alimentar , Larva/crescimento & desenvolvimento , Larva/fisiologia , Vibração
16.
Pest Manag Sci ; 74(11): 2530-2543, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29656515

RESUMO

BACKGROUND: Cytochrome P450 monooxygenases (P450s) are involved in the biosynthesis of endogenous intracellular compounds and the metabolism of xenobiotics, including chemical insecticides. We investigated the structural and expression level variance across all P450 genes with respect to the evolution of insecticide resistance under multigenerational dichlorodiphenyltrichloroethane (DDT) selection. RESULTS: RNA-sequencing (RNA-seq) and reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) indicated that the transcript levels of seven P450 genes were significantly up-regulated and three P450 genes were down-regulated in the DDT-resistant strain 91-R, as compared to the control strain 91-C. The overexpression of Cyp6g1 was associated with the presence of an Accord and an HMS-Beagle element insertion in the 5' upstream region in conjunction with copy number variation in the 91-R strain, but not in the 91-C strain. A total of 122 (50.2%) fixed nonsynonymous (amino acid-changing) mutations were found between 91-C and 91-R, and 20 (8.2%) resulted in amino acid changes within functional domains. Three P450 proteins were truncated as a result of premature stop codons and fixed between strains. CONCLUSION: Our results demonstrate that a combination of changes in P450 protein-coding regions and transcript levels are possibly associated with DDT resistance, and thereby suggest that selection for variant function may occur within this gene family in response to chronic DDT exposure. © 2018 Society of Chemical Industry.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , DDT/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Drosophila melanogaster/enzimologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteômica
17.
Ecotoxicology ; 27(1): 81-88, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29134493

RESUMO

Selective insecticide application is one important strategy for more precisely targeting harmful insects while avoiding or mitigating collateral damage to beneficial insects like honey bees. Recently, macrocyclic lactone-class insecticides have been introduced into the market place as selective bio-insecticides for controlling many arthropod pests, but how to target this selectivity only to harmful insects has yet to be achieved. In this study, the authors investigated the acute toxicity of fourmacrocyclic lactone insecticides (commercialized as abamectin, emamectin benzoate, spinetoram, and spinosad) both topically and through feeding studies with adult forager honey bees. Results indicated emamectin benzoate as topically 133.3, 750.0, and 38.3-fold and orally 3.3, 7.6, and 31.7-fold more toxic, respectively than abamectin, spinetoram and spinosad. Using Hazard Quotients for estimates of field toxicity, abamectin was measured as the safest insecticide both topically and orally for honey bees. Moreover, a significant reduction of sugar solution consumption by treatment group honey bees for orally applied emamectin benzoate and spinetoram suggests that these insecticides may have repellent properties.


Assuntos
Abelhas/fisiologia , Inseticidas/toxicidade , Animais , Abelhas/efeitos dos fármacos , Combinação de Medicamentos , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Lactonas , Macrolídeos/toxicidade , Testes de Toxicidade
18.
Pestic Biochem Physiol ; 151: 90-99, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30704719

RESUMO

4,4'-dichlorodiphenyltrichloroethane (DDT) has been re-recommended by the World Health Organization for malaria mosquito control. Previous DDT use has resulted in resistance, and with continued use resistance will likely increase in terms of level and extent. Drosophila melanogaster is a model dipteran with a well annotated genome allowing both forward and reverse genetic manipulation, numerous studies done on insecticide resistance mechanisms, and is related to malaria mosquitoes allowing for extrapolation. The 91-R strain of D. melanogaster is highly resistant to DDT (>1500-fold) and recently, reduced penetration, increased detoxification, and direct excretion have been identified as resistance mechanisms. Their interactions, however, remain unclear. Use of Gal4/UAS-RNAi transgenic lines of D. melanogaster allowed for the targeted knockdown of genes putatively involved in DDT resistance and has identified the role of several cuticular proteins (Cyp4g1 and Lcp1), cytochrome P450 monooxygenases (Cyp6g1 and Cyp12d1), and ATP binding cassette transporters (Mdr50, Mdr65, and Mrp1) involved in decreased sensitivity to DDT. These above findings have been further validated in 91-R flies using a nanoparticle-enhanced RNAi strategy, directly implication these genes in DDT resistance in 91-R flies.


Assuntos
DDT/farmacologia , Proteínas de Drosophila/metabolismo , Inseticidas/farmacologia , Animais , Drosophila melanogaster , Resistência a Inseticidas , Interferência de RNA
19.
Genome Biol Evol ; 9(12): 3356-3372, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29211847

RESUMO

The adaptation of insect populations to insecticidal control is a continual threat to human health and sustainable agricultural practices, but many complex genomic mechanisms involved in this adaption remain poorly understood. This study applied a systems approach to investigate the interconnections between structural and functional variance in response to dichlorodiphenyltrichloroethane (DDT) within the Drosophila melanogaster strain 91-R. Directional selection in 6 selective sweeps coincided with constitutive gene expression differences in DDT resistant flies, including the most highly upregulated transcript, Unc-115 b, which plays a central role in axon guidance, and the most highly downregulated transcript, the angiopoietin-like CG31832, which is involved in directing vascular branching and dendrite outgrowth but likely may be under trans-regulatory control. Direct functions and protein-protein interactions mediated by differentially expressed transcripts control changes in cell migration, signal transduction, and gene regulatory cascades that impact the nervous system. Although changes to cellular stress response pathways involve 8 different cytochrome P450s, stress response, and apoptosis is controlled by a multifacetted regulatory mechanism. These data demonstrate that DDT selection in 91-R may have resulted in genome-wide adaptations that impacts genetic and signal transduction pathways that converge to modify stress response, cell survival, and neurological functions. This study implicates the involvement of a multigenic mechanism in the adaptation to a chemical insecticide, which impact interconnected regulatory cascades. We propose that DDT selection within 91-R might act systemically, wherein pathway interactions function to reinforce the epistatic effects of individual adaptive changes on an additive or nonadditive basis.


Assuntos
DDT/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Resistência a Inseticidas/genética , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Genoma de Inseto , Inseticidas/farmacologia , Masculino , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
20.
Front Physiol ; 8: 770, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29066978

RESUMO

While ecological adaptation in insects can be reflected by plasticity of phenotype, determining the causes and molecular mechanisms for phenotypic plasticity (PP) remains a crucial and still difficult question in ecology, especially where control of insect pests is involved. Oedaleus asiaticus is one of the most dominant pests in the Inner Mongolia steppe and represents an excellent system to study phenotypic plasticity. To better understand ecological factors affecting grasshopper phenotypic plasticity and its molecular control, we conducted a full transcriptional screening of O. asiaticus grasshoppers reared in four different grassland patches in Inner Mongolia. Grasshoppers showed different degrees of PP associated with unique gene expressions and different habitat plant community compositions. Grasshopper performance variables were susceptible to habitat environment conditions and closely associated with plant architectures. Intriguingly, eco-transcriptome analysis revealed five potential candidate genes playing important roles in grasshopper performance, with gene expression closely relating to PP and plant community factors. By linking the grasshopper performances to gene profiles and ecological factors using canonical regression, we first demonstrated the eco-transcriptomic architecture (ETA) of grasshopper phenotypic traits (ETAGPTs). ETAGPTs revealed plant food type, plant density, coverage, and height were the main ecological factors influencing PP, while insect cuticle protein (ICP), negative elongation factor A (NELFA), and lactase-phlorizin hydrolase (LCT) were the key genes associated with PP. Our study gives a clear picture of gene-environment interaction in the formation and maintenance of PP and enriches our understanding of the transcriptional events underlying molecular control of rapid phenotypic plasticity associated with environmental variability. The findings of this study may also provide new targets for pest control and highlight the significance of ecological management practice on grassland conservation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...